Hi jimmy/gogurt, The predecessor graph, returned by predecessor_tree, contains all the nodes from the original graph, and edges representing the predecessor relationships given by the map. In any case, understand that normally you should not have to create an intermediate graph in order to filter a graph, since you can just use the information you had to begin with to directly build the filter. In your case, notice that to get the information you need you don't need the predecessor map, just the distance map which always gets returned by shortest_distance. The logic being: all vertices reached by shortest_distance get a distance attributed which is an integer smaller than the size of the graph, otherwise they get attributed an "impossible" distance which is larger than the size of the graph. (In your case the vertices of interest have distance of less or equal to 2, but as you already tell shortest_distance to stop at distance 2, any vertex that has a higher distance will still be mapped to the "impossible" distance, so we can just compare the distance to the size of the graph.) All you have to do is create a new property and assign values to it according to what you find in the distance map: g = gt.Graph() v = g.vertex( random.randint( 0, g.num_vertices() ) ) dmap = gt.shortest_distance( g, source=v, max_dist=2 ) mymap = g.new_vertex_property( 'bool' ) for w in g.vertices(): if dmap[w] < g.num_vertices(): mymap[w] = True Now you can use mymap in GraphView. I haven't actually ran the code so there might be typos. Good luck and have fun! Abraços, l e .~´ On Fri, May 6, 2016 at 11:02 PM, gogurt <gogurt@gmail.com> wrote:
Hi all,
I have a pretty large graph G from which want to do the following:
1) Randomly select a node from G 2) Get the vertices that lie within radius 2 of the node 3) Extract the subgraph induced by those vertices
My code for doing this is the following: / randnode = random.randint(0,G.num_vertices())
pred_map = gt.shortest_distance(G, source=G.vertex(randnode), max_dist=2, pred_map=True) pred_tree = gt.predecessor_tree(G, pred_map[1])
# DEBUG #print(pred_tree.num_vertices())
verts = pred_tree.vertices() vmap = G.new_vertex_property('bool') for i in verts: vmap[G.vertex_index[i]] = True /
Then using vmap, I plan to do a GraphView on G and get the subgraph. But something is clearly going wrong here. If I uncomment the line under the # DEBUG comment, then I clearly see that pred_tree always has the same number of vertices as the original graph.
Am I missing something about how predecessor_tree() works? I expected it to only return a subgraph of the original graph, which should have a lot fewer vertices...
-- View this message in context: http://main-discussion-list-for-the-graph-tool-project.982480.n3.nabble.com/... Sent from the Main discussion list for the graph-tool project mailing list archive at Nabble.com. _______________________________________________ graph-tool mailing list graph-tool@skewed.de https://lists.skewed.de/mailman/listinfo/graph-tool